Technical Drawing in Engineering

Lecture 2. Orthographic Projection: Basic concepts

What is Orthographic Projection

\square Orthographic means straight projection.
\square It stands for the projection of the shadow of the object on a plane.

Basic concepts I

\square European system

Basic concepts II

\square American system

Basic concepts III

\square European system $\Rightarrow \square$ (©)
\square American system

Solids in O.P. $\longrightarrow($ Edges $) \longrightarrow\binom{$ Visible and }{ hidden lines }$\longrightarrow \begin{gathered}\text { "Transparent } \\ \text { solid" }\end{gathered}$

- To represent simple objects: 2 projection planes

\square To represent complicated object: 3 projection planes

Basic concepts IV

\square Double orthogonal projection in two perpendicular planes called vertical and horizontal projection planes.
\square Division by quadrants:

- 4 quadrants with the following projection planes:
- $1^{\text {st }}$ quadrant: $\mathrm{V}+\mathrm{H}+$
- $2^{\text {nd }}$ quadrant: $\mathrm{V}+\mathrm{H}-$
- $3^{\text {rd }}$ quadrant: V - H -
- $4^{\text {th }}$ quadrant: $\mathrm{V}-\mathrm{H}+$

Basic concepts V

- 2 bisectors +8 octants

Basic concepts VI

$\mathbf{V}^{+} \mathbf{H}^{-}$

Reference line

Representation of a point I

Representation of a point II

Positions of the points

III
IV

Representation of a point II

Special positions of the points
 of

A point that belongs to the $2^{\text {nd }}$ bisector

Representation of a point III

Representation of a line

Visible and hidden parts of a line:

The visible parts of a line are those that belong to the first quadrant.

Representation of a line

Visible and hidden parts of a line:
The visible parts of a line are those that belong to the first quadrant.

Representation of a line

Visible and hidden parts of a line:
The visible parts of a line are those that belong to the first quadrant.

Representation of a line

Particular positions of a line

Representation of a plane

3 NON ALLIGNED POINTS

DEFINITION OF A PLANE

POINT AND LINE

TWO LINES THAT CUT EACH OTHER

Special positions of a plane

Membership

\square A point belongs to a line if its projections are included in the line's projections.
\square A line belongs to a plane if its traces are included in the traces of the plane.
\square A point belongs to a plane, if it belongs to a line that is included in this plane.

Intersection between lines

Special lines of a plane I

- Horizontal lines

- Frontal lines

Special lines of a plane II

\square Lines of maximum slope: Is a line that belongs to the plane and has the maximum angle with respect to the horizontal projection of the plane.

- Perpendicular to the horizontal projection of the plane.

\square Lines of maximum inclination: Is a line that belongs to the plane and has the maximum angle with respect to the vertical projection of the plane.
- Perpendicular to the vertical projection of the plane.

Special planes and their lines

Parallel to the 1st

Intersection of planes I

If the intersection of the projections of the planes is out of the paper

Use auxiliary plane

Intersection of planes II

\square Draw a frontal plane Y
\square Find the intersection of y with α and β (s\&t)

If both intersections of the plans projections
 are out of the paper, see video:

```
http://www.youtube.com/watch?v=9r-nWoubXec
```


Intersection of plans II

\square Draw a frontal plane Y
\square Find the intersection of y with α and β (s\&t)
\square Projections of s\&t would meet at point I
\square And $\alpha \& \beta$ at point P

If both intersections of the plans projections
 are out of the paper, see video:
http://www. youtube.com/watch?v=9r-nWoubXec

Intersection of plans II

- Draw a frontal plane Y
\square Find the intersection of y with α and β ($s \& t$)
\square Projections of s\&t would meet at point I
\square And $\alpha \& \beta$ at point P
\square Joining I \& P we get r (the line where both plans intersect)

If both intersections of the plans projections
 are out of the paper, see video:
http://www. youtube.com/watch?v=9r-nWoubXec

Intersection of planes III

Coinciding planes in the same point on the R.L.

Intersection of planes III

Coinciding planes in the same point on the R.L.

Intersection of planes III

Coinciding planes in the same point on the R.L.

Intersection of planes III

Coinciding planes in the same point on the R.L.

Planes parallel to the R.L.

Lecture 2. Orthographic projection. Basics

3. Calculate the intersection of line t with given line r-> Point B

Relative positions: Parallelism I

LINE WITH LINE:

2 lines are parallel if their projections are also parallel

PLANE WITH PLANE:

their traces are parallel as well

Relative positions. Parallelism II

PLANES PARALLELS TO THE R.L.: their profile traces should be parallel as well

Relative positions. Perpendicularity

\square A line and a plane are perpendicular when the projections of the line are perpendicular to the plane traces. The perpendicularity line-line and plane-plane is not visible in the vertical or horizontal projection.
\square If a line is perpendicular to a plane it is perpendicular to all the lines r, s, t, etc. that belong to the plane.
\square A plane is perpendicular to another plane if a line of one of the planes is perpendicular to the other plane.
\square If a line (plane) is perpendicular to a plane (line) it is also perpendicular to all of its parallel plans (lines).

