Technical Drawing in Engineering

Lecture 2. Orthographic Projection: Basic concepts

What is Orthographic Projection

- Orthographic means straight projection.
- It stands for the projection of the shadow of the object on a plane.

Basic concepts I

European system

Basic concepts II

American system

Basic concepts III

Basic concepts IV

- Double orthogonal projection in two perpendicular planes called vertical and horizontal projection planes.
- Division by quadrants:
 - 4 quadrants with the following projection planes:

IV

Basic concepts V

2 bisectors + 8 octants

Basic concepts VI

Representation of a point I

Representation of a point II

Representation of a point II

Representation of a point III

Representation of a line

The visible parts of a line are those that belong to the

first quadrant.

Representation of a line

Representation of a line

first quadrant.

Particular positions of a line

Representation of a plane

Special positions of a plane

Membership

A point *belongs* to a line if its **projections** are included in the line's **projections**.

A line belongs to a plane if its traces are included in the traces of the plane.

A point belongs to a plane, if it belongs to a line that is included in this plane.

Intersection between lines

Special lines of a plane I

Special lines of a plane II

- Lines of maximum slope: Is a line that belongs to the plane and has the maximum angle with respect to the horizontal projection of the plane.
 - Perpendicular to the horizontal projection of the plane.

- Lines of maximum inclination: Is a line that belongs to the plane and has the maximum angle with respect to the vertical projection of the plane.
 - Perpendicular to the vertical projection of the plane.

Lecture 2. Orthographic projection. Basics

RECTA DE MAX. INCLINACION

Special planes and their lines

If the intersection of the projections of the planes is out of the paper

- Draw a frontal plane γ
- Find the intersection of γ with α and β (s&t)

If both intersections of the plans projections are out of the paper, see video: <u>http://www.youtube.com/watch?v=9r-nWoubXec</u>

- Draw a frontal plane γ
- Find the intersection
 of γ with α and β (s&t)
- Projections of s&t would meet at point I
- **Δ** And α &β at point P

If both intersections of the plans projections are out of the paper, see video: <u>http://www.youtube.com/watch?v=9r-nWoubXec</u>

- Draw a frontal plane γ
- Find the intersection
 of γ with α and β (s&t)
- Projections of s&t would meet at point I
- **And** α & β at point P
- Joining I & P we get r (the line where both plans intersect)

If both intersections of the plans projections are out of the paper, see video: <u>http://www.youtube.com/watch?v=9r-nWoubXec</u>

Coinciding planes in the same point on the R.L.

Coinciding planes in the same point on the R.L.

Coinciding planes in the same point on the R.L.

Intersection between a line and a plane

1. Create a plane γ that includes the line r. (easiest option vertical plane)

Intersection between a line and a plane

- Create a plane γ that includes the line r. (easiest option vertical plane)
- 2. Calculate the intersection between plane γ and plane β -> Line t

Intersection between a line and a plane

- 1. Create a plane γ that includes the line r. (easiest option vertical plane)
- 2. Calculate the intersection between plane γ and plane β -> Line t
- 3. Calculate the intersection of line t with given line r -> Point B

Relative positions: Parallelism I

Relative positions. Parallelism II

PLANES PARALLELS TO THE R.L.: their profile traces should be parallel as well

Relative positions. Perpendicularity

□ A line and a plane are perpendicular when the projections of the line are perpendicular to the plane traces. The perpendicularity line-line and plane-plane is not visible in the vertical or horizontal projection.

□ If a line is perpendicular to a plane it is perpendicular to all the lines r, s, t ,etc. that belong to the plane.

□ A plane is perpendicular to another plane if a line of one of the planes is perpendicular to the other plane.

□ If a line (plane) is perpendicular to a plane (line) it is also perpendicular to all of its parallel plans (lines).